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LETTER TO THE EDITOR 

Path integration of a three body problem 

D C KHANDEKAR and S V LAWANDE 
Reactor Engineering Division, Bhabha Atomic Research Centre, Trombay, 
Bombay-85, India 

MS received 9 May 1972 

Abstract. Path integration for a one dimensional three body problem is discussed. 
This involves essentially the path integration of a Lagrangian in plane polar coordin- 
ates with a potential energy term depending on both the radial and angular 
coordinates. 

In a recent paper (Khandekar and Lawande 1972), the authors have presented a path 
integral for a one dimensional three body problem. This problem considered three 
equal mass particles in one dimension, with equal strength harmonic forces between 
every two particles, and an additional interaction which varies as the inverse square 
of the distance between any one pair of particles. In this note, we discuss the path 
integration of the more general three body problem with harmonic and inverse square 
potentials between every pair of particles. This case is interesting because it involves a 
nontrivial extension of the one considered earlier. 

The problem is characterized by the Lagrangian 

L = &(3i12+k22+k32) -$W2((X1 -x2)2+(x2-x3)2+(xg-x1)2} 

-g{(x1--x2)-2 + (x2 -x3) -2  + (xg -xJ-2} (1) 

where xl, x2, x3 are the coordinates of the three particles, w the angular frequency 
arising from the strength of the harmonic potentials, and g the strength of the inverse 
square potentials. We assume g > -$  to avoid the two body collapse and use units 
such that ?i = m = 1, where m is the mass of the particles. Introducing the centre of 
mass (cM), Jacobi coordinates and subsequently polar coordinates (r,  4), the Lagrangian 
of equation (1) is transformed as 

The centre of mass term 8 R2 in the Lagrangian yields a free particle propagator 
and is of no further interest. Our aim is to carry out the path integration of a ‘two 
dimensional classical one body problem’ in polar coordinates involving a potential 
depending on both r and 4, and described by the Lagrangian 
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This case differs from the one considered in the earlier paper (Khandekar and 
Lawande 1972) by the presence of sin2 3+ instead of sin2 + in the 'centrifugal potential' 
term. To perform the path integration, we first consider the action S(rj, t,; r,-l, t,-l) 
(r, = r(t,), rj-l = r(t ,- l))  over an infinitesimally small time interval t,--tj-l = E :  

Next, we have to express cos(#, - 4,-1) in terms of cos 3(+, - 4,- 1) correctly. 
Writing # = 43-+j-l for short, it is easy to obtain 

1 
9 COS# 2:  COS COS 3#-3#~~)+0(#'). ( 5 )  

As pointed out by Edwards and Gulyaev (1964), it is necessary to retain the fourth 
order terms in the angular changes # in order to obtain the correct finite time propaga- 
tor. We note further that only terms of O(E) need be retained in the action, and use 
the following easily verified intermediate results : 

#4 exp -cos + 1: -- exp -cos # +o(e3) (:" :22 (1 ) 

and the expansion formula (ErdClyi 1953, p 102) 

(sin a sin j?)1/2-AIA- 1/2(u sin a sin f l )  exp(u cos CL cos B) 
* Z!(h+Z) 

= 22A(24-1/2(r(~))2 2 ____ I;,,(U)C~(COS CL)C,~(COS p).  (10) 
I = o  r ( 2 ~ + z )  

Thus, setting 

(1 1) 

a = 3+, B = 3#,-1 = 1 j  h = Z,+a+i) (12) 

rjrj- 1 

9i 
11 = - a = &(1+4g)1'2 h = a+g 

and 

and using equations (5-12), we obtain as before (Khandekar and Lawande 1972) 
the propagator for infinitesimal time interval 

w,, t,;rj-1, lj-1) = (2;iJ - expW(r,, t,; rj-1, t,-1)} 

( 2 2  
= - &,"(sin 3$, sin 3dr-I)a+1'2Cl,a+i/2(~os 34,) 

(13) x Clp+ 1 / 2 ( ~ o ~  3+,- l)Rl,(rj, r,- 
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where N,, is the normalization factor of the Gegenbauer polynomial C,:+1'2(~~~ 
(ErdClyi 1953, p 174) and 

The finite time propagator may then be obtained by successive iteration. After per- 
forming the intermediate angular integrations (over the range 0 d + < 4 3 ) ,  we arrive 
at 

m 

K(r", +"; r ' ,  +', t )  = 2 K,(r", r', t)N?(sin 34" sin 3 ~ $ ' ) a + I / ~  
l = O  (15) 

x C?+1'2(COS 3 + " ) C ~ + ~ ' 2 ( C O S  34') 
where 

is the radial propagator of the I wave. Since K,(r", r', t )  involves only the harmonic 
potential, it is possible to evaluate it in a closed form as before (Khandekar and 
Lawande 1972). Thus 

) 
R iR 

( i s inn t )  ( 2  
K,(r", r', t )  = ___ exp -(r'2 + Y2) cot Rt 

Finally, the expansion of the propagator in terms of the eigenfunctions of the 
corresponding Schrodinger equation determined by Calogero (1969), may be obtained 
as in the earlier paper. 

The main points of interest in this work are that (i) it involves the path integration 
of the Lagrangian of equation (3) which contains a potential term which depends on 
both r and +, (ii) the special form of the'centrifugal' potential term, namely g/2r2 sin2 3$, 
yields a natural separation of the propagator into radial and angular parts; physically 
this is related to the conservation of the classical quantity (pG2 +g/sin2 3+) where p4  is 
the angular momentum, and (iii) it requires the use of equation ( 5 )  which once more 
brings out the rule about path integration in polar coordinates first emphasized by 
Edwards and Gulyaev (1964). 
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